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Equivalence of ideal gases in two dimensions and Landen’s relations
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Based on a recently given unified formulation of the statistical thermodynamics of ideal gases, an equiva-
lence between the Bose and Fermi gases in two dimensions is established. This equivalence is shown to be a
consequence of Landen’s relations, found some 200 years ago, relating the Bose and Fermi fugacities through
the Euler transformation. The specific heat result due to NPys. Rev135 A1515(1964] follows at once.

The special nature of two-dimensional solutions is descrif@ti063-651X%97)14802-4

PACS numbg(s): 05.30—d, 82.65-i, 67.40.Rp, 68.35.Md

I. INTRODUCTION wherez is the fugacity and Lij(s) is the polylog ofm ands.
If m=1, Li,(s) is analytic everywhere itz excluding the
It has long been known that ideal gases at low temperabranch cut froms=1 to «. It is real if s is real and—o<s

tures exhibit a peculiar dependence on the number of dimen<1. A useful integral representation for it i6]

sionsd whether it is an even or odd number. One can trace

this difference to a square-root singularity in the momentum Li . 1(S)= 1 JS

distribution function for odd-numbered dimensions andtoa ™ "* F(m+1) Jo

log singularity for even-numbered dimensions. For this rea- 2

son, the two-dimensiondRD) gases may well possess sim- i ) ) )

pler properties than the 1D gases. It was in fact shown some N this formulation, the domain of the Bose gas -1,

30 years ago by Majl] that the 2D ideal Bose and Fermi While the domain of the Fermi gas is»<{<0. From (1)

gases have the same specific heat at the same temperatf8€ €an then obtain the basic thermodynamic quantities—

No such statement has been made for the 1D gases. Also, SB¢SSUreP, energyU, and entropys:

s m
<Iogf> dt/(l—t)}, Res<1.

McKelvey and Pulvef?2]. lap_1i .
This result of May seems to have become well known P BP=lan:1(D/Lign(0), )

[3,4]; however, as far as we know, the underlying structure BUIN=(d/2)Li g 1( )/ Li gl O, @)

has never been examined to reveal the special nature of the

solution. The work has not been extended to deduce other SINK= (d/2+ 1) Li 4o+ 1( )/ Ligr( £) —log|Z], (5)

physical relations. This lack of progress may have been due

to May's method of proof, which has perhaps obscured thavhere f=1/KkT and also fluctuation quantities such as the
essential connection. In his approach, the fugacities arBumber fluctuation¥,

eliminated in favor of some scaling temperature, which, o .

however, does not possess the same physical significance. Y=[Haz- (DLl O] ©)

In this work, we shall show that there exists a completeNote thatY is related to the susceptibility by=(8/p)Y. In
equivalence between the two gased#2. This equivalence (1) a kinematical factor due to the spin or polarization de-
is established through a unified formulation of the StatiSticabeneracy is not included for simplicity. For massless systems
thermodynamics of ideal gases by polylogs. To this formu<e.g., photon gasthe same result§Egs. (1) and (3)—(6)]
lation in 2D is applied certain formal relations found someapply, provided thah is replaced by an equivalent one and
200 years ago by Landd], a contemporary of Euler. We d/2 by d therein[6]. Observe that the above thermodynamic
shall see that the specific heat result of May follows at onceguantities are functions of only two parameters, the fugacity
We can also see that the two gases have the same entropyhd dimensions.

We shall learn that there exists a simple relationship between The unified formulation shows that the thermodynamic
the two fugacities that underlies the equivalence. It is a relaproperties are described by the structural properties of poly-

tionship possible only in 201D if relativistic). logs. There are two classes of polylogs required, those of
integral and half-integral orders, respectively, for even- and

II. UNIFIED STATISTICAL THERMODYNAMICS odd-numbered dimensions. The polylogs of half-integral or-

OF IDEAL GASES der contain a square root singularity and are still poorly un-

derstood analytically. The polylogs of integral order contain

It was recently shown that the statistical thermOdynamiC%rﬂy a |og singu|arity and are much better deve|oped_ The
of ideal quantum gases can be unif{@l The reduced den- higher order onete.g., dilog, trilog, although given only as

sity of an ideal gas ird dimensions(p=N/V the number integral functions, have functional relations such as duplica-

density and\ the thermal wavelengjhis expressible as tion and inversion. The lower-order ones, starting from the
monolog down, are known in closed form. This state of the
. z if Bose knowledge of polylogs permits a much more thorough

d_ —
PAT=SONOUaRL), L=, Fermi, @ knowledge of the statistical thermodynamics in even-
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numbered dimensiong.g.,d=0, 2, and possibly even)4 BU(zg)/N=Liy(zg)/Li(zg)

than in odd-numbered dimensions. In the next section, we ) ) )
shall see this particular situation illustrated. _ Lin(=25/(1~25))+1/2]Liy(~ 25/(1— 25))}

Li;(—zg/(1—2g))

Ill. LANDEN'S RELATIONS

(13
' Landen found trgnsfqrmation rgla.tions for the dilog andBy Eq. (12), we obtain at once,

trilog. One can easily write down similar ones for the nil log

and monolog. We shall merely quote these results here and U(zg)/N=U(z¢)/N+1/28" 1Li,(— z)

give their proofs in the Appendix.

If x is real number anat<1 andy=—x/(1—Xx), then =U(zp)IN=-1/28"1p\2. (14
Lig(X)=—Lig(y)/[1+Lig(y)], (7)  The second term on the right-hand side of Etd) is T
independent. It corresponds exactly to &2, the ground
Liy(x)=—Liq(y), (8) state energy per particle of the Fermi gas in 2D, whaféis

the spinless Fermi energy, i.e®=¢Y)/(2s+1). Hence,

and we conclude that if the two reduced densities are the same,

the energies of the Bose and Fermi gases differ by the
ground state energy of the Fermi gas only. It means of course
that their specific heats must be the same. This is precisely

Lio(x)=—Lia(y) = 3[Liy(y)]% 9

The relation for the nil log7) is artificial, merely meant to h it th had obtaindd 12
dress it in the spirit of Landen. The relation for the trilog,t € r'esut';] at May had o ta'ﬂé 12, h iy th
which is progressively more complicated, is not given here SINce the pressure and the energy have essentially the

since it is not used in this work. It may be found in the bookSame form{compare Eqs(3) and(4)], one can immediately

by Lewin [5]. These relations of Landen express the trans€onclude also that

formation of polylogs under the Euler transformatiornxaio P(z:)=P(ze)— P 15
y [7]. It may be recalled that the Euler transformation maps (25) =P(zr) = Po, (19

a line into a line and also a circle into a circle, being awhere P, denotes the zero-point pressure of the spinless

bilinear transformation8]. Fermi gas. Recall tha®,=1pe (FO) [10].
Now let us turn to the entropip). For the Bose gas, using
IV. APPLICATIONS IN TWO DIMENSIONS (8), (9), and(12) in (5), we obtain
We shall now setl=2 in the thermodynamic formulation S(zg)/Nk=2Li,(zg)/Li,(zg) —log zg
given in Sec. Il and see what special solutions may result _ )
therefrom. If the reduced densities are made the same, from =2Liy(—2z¢)/Liy(—2zp) —log z¢
Eq. (1) =S(z¢)INK, (16)
pN?=Liy(zg)=—Liy(—2z¢), (10

where we have used the identity [dg-x)=—Li;(—x). See
wherezg andz- are the fugacities of the Bose and Fermi the Appendix. Hence, the entropies of the two gases are also

; ; ; t the same reduced density.
gases, respectively. If both types of particles are spinless arife same a .
have the same mass and their densities are also the same, Fnally, the number fluctuations. Frof#), by (7), (8), and
then the above condition means that their temperatures atd?)
also the same. This is a physical condition that may be sat- Y(2e) = Lin(ze)/Li (2
isfied if d>0, but not necessarily #=0[9]. It is convenient (z8)=Lio(Z8)/Li1(28)
to assume that by Eq10), both gases are at the same tem- =(1+2zp)Y(zp). a7
perature.
By Landen’s second relation, E¢(B), then, Thus, the number fluctuations are not equivalent at all tem-
peratures. If zz— (i.e., zg—1), Y(zg)—1l/logze but
Lii(—2zp)=Li(—2zg/(1—2p)). (1) Y(zg)—z:/log z¢ . The former vanishes while the latter di-
) verges. But ifzc—0, the two of course become equivalent,
Hence, we conclude that the same reduced density meaggih peing taken to the classical limit. The same conclusion

that applies to the susceptibilities singe=(B/p)Y.
=za/(1—2g). 12
2r=2s/(1~2g) (12) V. CONCLUDING REMARKS

The two fugacities are related by the Euler transformation. o solutions can actually be seen more directly. Equa-

Since for a givend all the thermodynamic properties are ign (1) implies that the grand partition functio® is
expressible as a function of the fugacity opsee(3)—(6)], [6,9,11.

Eqg. (12) means that the two 2D gases must be fundamentally

related through the relationship of their fugacities. 1N log Q=sgr(§))(dLid,2+ 1(0), (18
Let us apply Eq.(12) to Egs.(3—6). First, consider the

energy for the Bose gas and apply Landen’s relati@hand  whereV=LY L is the length of a hypercube. Hencegi2,

(9). Then, by Landen’s relation$8) and (9),
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1N log Q(zg)=1N log Q(z¢) — 1/2p%\?, (199  to conclude that the equivalence found in 2D is unique, not
to be found in any other physical dimension. If one were to

where nowV=L?. The second term on the right-hand side isconsider these gases in the relativistic limit, the equivalence
linear in B. According to the grand ensemble thedd2], = would be found in 1D.
U=-d/dBlog Q|,. Hence, the two energies differ by the
constant accompanying thg@above. The two specific heats ACKNOWLEDGMENTS
must be the same. Als®,V=5"1log Q|M, meaning that the ) ) )
two pressures differ by a constant. Sinc&/k= | am indebted to Professor N. E. Frankel for informing me

—B%(dlaB)PV|,, the two entropies must also be the sameabout Ref[1]. I am also grateful to Professor G. J. Dash for
[13]. . his correspondence. | thank Dr. M. Apostol and Professor M.

The equivalence thus arises from the fact that=f2, the Luban for helpful discussions. This work has been supported
energy and pressure of the Bose gas are those of the FerffliPart by a grant from NATQCRG 921268
gas shifted by the zero-point constants of the Fermi gas. It is

unique to two dimensions. It cannot occur in any other di- APPENDIX: LANDEN'S RELATIONS
mension. We shall briefly examine why it might be pre-  \ye shall prove Landen'’s relations given in Sec. Iil. The
cluded in other dimensions. proofs for the first two relations are trivial since

_ ConS|derd=_4, the next S|mple_st even nurnbereql d'me”'Lio(x)zx/(l—x) and Li;(x) = —log(1—x), wherex<1. One
sion. Ap.plylng it to Eq.(1) and using Landen’s relatiof®), can obtain Lj(x) from Eq. (2) directly and Li(x) from
we obtain Li,(x) by the recurrence relation L{x)= (xd/dx)Li . 1(X)

~Liy(—2z¢)=Liy(zg) settingm=0. Also, se€6,9].
To prove the third relatioif9), we use the integral repre-
=—Liy,(—2zg/(1—2p)) sentation(2). Lett=—x/(1—x). Then,

—3{Lir(—2zs/(1~2p))}% (20

Li2(s)=—f [log s—log{—x/(1—x)}]dx/(1—X),
Thus,zg# zg/(1—zg). The relationship is more complicated, 0

although it probably contains the Euler form in some ways. (A1)
Let us next consided=1, the simplest odd-numbered di- whereg=—-s/(1—s). Then,
mension. Then,
Lz~ 2) =Lz Zg). (21) Lio(s)=~ fo logio/xjdx/(1=x)
There are no Landen’s relations for the polylogs of half- -
integral order. The relationship between the two fugacities +j log{(1— o)/ (1—x)}dx/(1—X)
cannot be exactly determined, although one again suspects 0
that the Euler form might also be involved. = —Liy(0)— 3(Li(0))? Q.E.D. (A2)

The relationships between the two fugacities cannot be
the Euler form exactly il#2. Without this knowledge, itis In the last step we have used the monolog form
not possible to establish any connection between the thermai(x) =—log(1—x), x<1. For the original proofs of the
dynamics of the Bose and Fermi gases. It seems reasonaldbove and for the trilog, see Lewin’s bof].
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