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Equivalence of ideal gases in two dimensions and Landen’s relations

M. Howard Lee
Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602-2451

~Received 10 October 1996!

Based on a recently given unified formulation of the statistical thermodynamics of ideal gases, an equiva-
lence between the Bose and Fermi gases in two dimensions is established. This equivalence is shown to be a
consequence of Landen’s relations, found some 200 years ago, relating the Bose and Fermi fugacities through
the Euler transformation. The specific heat result due to May@Phys. Rev.135, A1515~1964!# follows at once.
The special nature of two-dimensional solutions is described.@S1063-651X~97!14802-4#

PACS number~s!: 05.30.2d, 82.652i, 67.40.Rp, 68.35.Md
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I. INTRODUCTION

It has long been known that ideal gases at low tempe
tures exhibit a peculiar dependence on the number of dim
sionsd whether it is an even or odd number. One can tra
this difference to a square-root singularity in the moment
distribution function for odd-numbered dimensions and t
log singularity for even-numbered dimensions. For this r
son, the two-dimensional~2D! gases may well possess sim
pler properties than the 1D gases. It was in fact shown so
30 years ago by May@1# that the 2D ideal Bose and Ferm
gases have the same specific heat at the same temper
No such statement has been made for the 1D gases. Also
McKelvey and Pulver@2#.

This result of May seems to have become well kno
@3,4#; however, as far as we know, the underlying struct
has never been examined to reveal the special nature o
solution. The work has not been extended to deduce o
physical relations. This lack of progress may have been
to May’s method of proof, which has perhaps obscured
essential connection. In his approach, the fugacities
eliminated in favor of some scaling temperature, whi
however, does not possess the same physical significan

In this work, we shall show that there exists a compl
equivalence between the two gases ifd52. This equivalence
is established through a unified formulation of the statisti
thermodynamics of ideal gases by polylogs. To this form
lation in 2D is applied certain formal relations found som
200 years ago by Landen@5#, a contemporary of Euler. We
shall see that the specific heat result of May follows at on
We can also see that the two gases have the same ent
We shall learn that there exists a simple relationship betw
the two fugacities that underlies the equivalence. It is a re
tionship possible only in 2D~1D if relativistic!.

II. UNIFIED STATISTICAL THERMODYNAMICS
OF IDEAL GASES

It was recently shown that the statistical thermodynam
of ideal quantum gases can be unified@6#. The reduced den
sity of an ideal gas ind dimensions~r5N/V the number
density andl the thermal wavelength! is expressible as

rld5sgn~z!Lid/2~z!, z5 H z
2z

if Bose
if Fermi, ~1!
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wherez is the fugacity and Lim(s) is the polylog ofm ands.
If m>1, Lim(s) is analytic everywhere ins excluding the
branch cut froms51 to `. It is real if s is real and2`,s
,1. A useful integral representation for it is@6#

Lim11~s!5
1

G~m11!
E
0

sF K log st L mdt/~12t !G , Res,1.

~2!

In this formulation, the domain of the Bose gas is 0,z,1,
while the domain of the Fermi gas is2`,z,0. From ~1!
one can then obtain the basic thermodynamic quantitie
pressureP, energyU, and entropyS:

r21bP5Lid/211~z!/Lid/2~z!, ~3!

bU/N5~d/2!Lid/211~z!/Lid/2~z!, ~4!

S/Nk5~d/211!Lid/211~z!/Lid/2~z!2 loguzu, ~5!

whereb51/kT and also fluctuation quantities such as t
number fluctuationsY,

Y5@Lid/221~z!#/@Lid/2~z!#. ~6!

Note thatY is related to the susceptibility byx5~b/r!Y. In
~1! a kinematical factor due to the spin or polarization d
generacy is not included for simplicity. For massless syste
~e.g., photon gas! the same results@Eqs. ~1! and ~3!–~6!#
apply, provided thatl is replaced by an equivalent one an
d/2 by d therein@6#. Observe that the above thermodynam
quantities are functions of only two parameters, the fugac
and dimensions.

The unified formulation shows that the thermodynam
properties are described by the structural properties of p
logs. There are two classes of polylogs required, those
integral and half-integral orders, respectively, for even- a
odd-numbered dimensions. The polylogs of half-integral
der contain a square root singularity and are still poorly u
derstood analytically. The polylogs of integral order conta
only a log singularity and are much better developed. T
higher order ones~e.g., dilog, trilog!, although given only as
integral functions, have functional relations such as dupli
tion and inversion. The lower-order ones, starting from
monolog down, are known in closed form. This state of t
knowledge of polylogs permits a much more thorou
knowledge of the statistical thermodynamics in eve
1518 © 1997 The American Physical Society
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55 1519EQUIVALENCE OF IDEAL GASES IN TWO . . .
numbered dimensions~e.g., d50, 2, and possibly even 4!
than in odd-numbered dimensions. In the next section,
shall see this particular situation illustrated.

III. LANDEN’S RELATIONS

Landen found transformation relations for the dilog a
trilog. One can easily write down similar ones for the nil lo
and monolog. We shall merely quote these results here
give their proofs in the Appendix.

If x is real number andx,1 andy52x/(12x), then

Li0~x!52Li0~y!/@11Li0~y!#, ~7!

Li1~x!52Li1~y!, ~8!

and

Li2~x!52Li2~y!2 1
2 @Li1~y!#2. ~9!

The relation for the nil log~7! is artificial, merely meant to
dress it in the spirit of Landen. The relation for the trilo
which is progressively more complicated, is not given h
since it is not used in this work. It may be found in the bo
by Lewin @5#. These relations of Landen express the tra
formation of polylogs under the Euler transformation ofx to
y @7#. It may be recalled that the Euler transformation ma
a line into a line and also a circle into a circle, being
bilinear transformation@8#.

IV. APPLICATIONS IN TWO DIMENSIONS

We shall now setd52 in the thermodynamic formulation
given in Sec. II and see what special solutions may re
therefrom. If the reduced densities are made the same,
Eq. ~1!

rl25Li1~zB!52Li1~2zF!, ~10!

wherezB and zF are the fugacities of the Bose and Fer
gases, respectively. If both types of particles are spinless
have the same mass and their densities are also the s
then the above condition means that their temperatures
also the same. This is a physical condition that may be
isfied if d.0, but not necessarily ifd50 @9#. It is convenient
to assume that by Eq.~10!, both gases are at the same te
perature.

By Landen’s second relation, Eq.~8!, then,

Li1~2zF!5Li1„2zB /~12zB!…. ~11!

Hence, we conclude that the same reduced density m
that

zF5zB /~12zB!. ~12!

The two fugacities are related by the Euler transformati
Since for a givend all the thermodynamic properties a
expressible as a function of the fugacity only@see~3!–~6!#,
Eq. ~12! means that the two 2D gases must be fundament
related through the relationship of their fugacities.

Let us apply Eq.~12! to Eqs. ~3–6!. First, consider the
energy for the Bose gas and apply Landen’s relations~8! and
~9!. Then,
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bU~zB!/N5Li2~zB!/Li 1~zB!

5
Li2„2zB /~12zB!…11/2$Li1„2zB /~12zB!…%2

Li 1„2zB /~12zB!…
.

~13!

By Eq. ~12!, we obtain at once,

U~zB!/N5U~zF!/N11/2b21Li 1~2zF!

5U~zF!/N21/2b21rl2. ~14!

The second term on the right-hand side of Eq.~14! is T
independent. It corresponds exactly to 1/2« F

(0), the ground
state energy per particle of the Fermi gas in 2D, where« F

(0) is
the spinless Fermi energy, i.e.,« F

(s)5« F
(0)/(2s11). Hence,

we conclude that if the two reduced densities are the sa
the energies of the Bose and Fermi gases differ by
ground state energy of the Fermi gas only. It means of cou
that their specific heats must be the same. This is preci
the result that May had obtained@1,12#.

Since the pressure and the energy have essentially
same form,@compare Eqs.~3! and~4!#, one can immediately
conclude also that

P~zB!5P~zF!2P0 , ~15!

where P0 denotes the zero-point pressure of the spinl
Fermi gas. Recall thatP05

1
2r« F

(0) @10#.
Now let us turn to the entropy~5!. For the Bose gas, usin

~8!, ~9!, and~12! in ~5!, we obtain

S~zB!/Nk52Li2~zB!/Li 1~zB!2 log zB

52Li2~2zF!/Li 1~2zF!2 log zF

5S~zF!/Nk, ~16!

where we have used the identity log~11x!52Li1~2x!. See
the Appendix. Hence, the entropies of the two gases are
the same at the same reduced density.

Finally, the number fluctuations. From~6!, by ~7!, ~8!, and
~12!,

Y~zB!5Li0~zB!/Li 1~zB!

5~11zF!Y~zF!. ~17!

Thus, the number fluctuations are not equivalent at all te
peratures. If zF→` ~i.e., zB→1!, Y(zF)→1/logzF but
Y(zB)→zF/log zF . The former vanishes while the latter d
verges. But ifzF→0, the two of course become equivalen
both being taken to the classical limit. The same conclus
applies to the susceptibilities sincex5~b/r!Y.

V. CONCLUDING REMARKS

Our solutions can actually be seen more directly. Eq
tion ~1! implies that the grand partition functionQ is
@6,9,11#.

1/V log Q5sgn~z!l2dLid/211~z!, ~18!

whereV5Ld, L is the length of a hypercube. Hence, ifd52,
by Landen’s relations~8! and ~9!,
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1520 55M. HOWARD LEE
1/V log Q~zB!51/V log Q~zF!21/2r2l2, ~19!

where nowV5L2. The second term on the right-hand side
linear in b. According to the grand ensemble theory@12#,
U52]/]b logQuz . Hence, the two energies differ by th
constant accompanying theb above. The two specific heat
must be the same. Also,PV5b21 logQum , meaning that the
two pressures differ by a constant. SinceS/k5
2b2(]/]b)PVum , the two entropies must also be the sam
@13#.

The equivalence thus arises from the fact that ifd52, the
energy and pressure of the Bose gas are those of the F
gas shifted by the zero-point constants of the Fermi gas.
unique to two dimensions. It cannot occur in any other
mension. We shall briefly examine why it might be pr
cluded in other dimensions.

Considerd54, the next simplest even numbered dime
sion. Applying it to Eq.~1! and using Landen’s relation~9!,
we obtain

2Li2~2zF!5Li2~zB!

52Li2„2zB /~12zB!…

2 1
2 $Li1„2zB /~12zB!…%2. ~20!

Thus,zFÞzB/(12zB). The relationship is more complicate
although it probably contains the Euler form in some wa
Let us next considerd51, the simplest odd-numbered d
mension. Then,

2Li1/2~2zF!5Li1/2~zB!. ~21!

There are no Landen’s relations for the polylogs of ha
integral order. The relationship between the two fugacit
cannot be exactly determined, although one again susp
that the Euler form might also be involved.

The relationships between the two fugacities cannot
the Euler form exactly ifdÞ2. Without this knowledge, it is
not possible to establish any connection between the ther
dynamics of the Bose and Fermi gases. It seems reason
s
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to conclude that the equivalence found in 2D is unique,
to be found in any other physical dimension. If one were
consider these gases in the relativistic limit, the equivale
would be found in 1D.
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APPENDIX: LANDEN’S RELATIONS

We shall prove Landen’s relations given in Sec. III. T
proofs for the first two relations are trivial sinc
Li0(x)5x/(12x) and Li1(x)52log~12x!, wherex,1. One
can obtain Li1(x) from Eq. ~2! directly and Li0(x) from
Li1(x) by the recurrence relation Lim(x)5(xd/dx)Lim11(x)
settingm50. Also, see@6,9#.

To prove the third relation~9!, we use the integral repre
sentation~2!. Let t52x/(12x). Then,

Li 2~s!52E
0

s

@ log s2 log$2x/~12x!%#dx/~12x!,

~A1!

wheres52s/(12s). Then,

Li 2~s!52E
0

s

log$s/x%dx/~12x!

1E
0

s

log$~12s!/~12x!%dx/~12x!

52Li2„s)2
1
2 „Li1~s!…2 Q.E.D. ~A2!

In the last step we have used the monolog fo
Li1(x)52log~12x!, x,1. For the original proofs of the
above and for the trilog, see Lewin’s book@5#.
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